Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks.

نویسنده

  • André Pineau
چکیده

The size and the character (low and large angle, special boundaries, tilt and twist boundaries, twins) of the grain boundaries (GBs) in polycrystalline materials influence their strength and their fracture toughness. Recent studies devoted to nanocrystalline (NC) materials have shown a deviation from the Hall-Petch law. Special GBs formed by Σ3 twins in face-centred cubic metals are also known to have a strong effect on the mechanical behaviour of these metals, in particular their work-hardening rate. Grain orientation influences also crack path, the fracture toughness of body-centred cubic (BCC) metals and the fatigue crack growth rate of microstructurally short cracks. This paper deals both with slip transfer at GBs and with the interactions between propagating cracks with GBs. In the analysis of slip transfer, the emphasis is placed on twin boundaries (TBs) for which the dislocation reactions during slip transfer are analysed theoretically, experimentally and using the results of atomic molecular simulations published in the literature. It is shown that in a number of situations this transfer leads to a normal motion of the TB owing to the displacement of partial dislocations along the TB. This motion can generate a de-twinning effect observed in particular in NC metals. Crack propagation across GBs is also considered. It is shown that cleavage crack path behaviour in BCC metals is largely dependent on the twist component of the GBs. A mechanism for the propagation of these twisted cracks involving a segmentation of the crack front and the existence of intergranular parts is discussed and verified for a pressure vessel steel. A similar segmentation seems to occur for short fatigue cracks although, quite surprisingly, this crossing mechanism for fatigue cracks does not seem to have been examined in very much detail in the literature. Metallurgical methods used to improve the strength of the materials, via grain boundaries, are briefly discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plastic strain localization and fatigue micro-crack formation in Hastelloy X

In polycrystalline metals, local deformation heterogeneities induced by the microstructure influence fatigue crack initiation and micro-crack propagation. The localization in plastic strains associated with heterogeneous deformation has been described as a necessary condition and a precursor for the nucleation of fatigue cracks. However, a clear and quantitative assessment of the correlation be...

متن کامل

Effects of microstructures on fatigue crack initiation and short crack propagation at room temperature in an advanced disc superalloy

Fatigue crack initiation and early short crack propagation behaviour in two microstructural variants of a recently developed Low Solvus, High Refractory (LSHR) disc superalloy at room temperature has been investigated by three-point bending with replication procedure. The results shows that fine gained (FG) LSHR possesses higher fatigue life due to its better crack initiation resistance, limite...

متن کامل

The role of grain boundaries on fatigue crack initiation – An energy approach

In this paper, we construct a model for prediction of fatigue crack initiation based on the material’s microstructure. In order to do so, the energy of a persistent slip band (PSB) is monitored and an energy balance approach is taken, in which cracks initiate and the material fails due to stress concentration from a PSB (with respect to dislocation motion). These PSBs are able to traverse low-a...

متن کامل

Initiation of fatigue cracks in AZ91 Mg alloy processed by ECAP

Mechanism of fatigue crack initiation was investigated in ultrafine-grained (UFG) magnesium alloy AZ91 processed by equal channel angular pressing (ECAP). Fatigue behaviour of UFG material was compared to the behaviour of material in an initial as-cast state. Focused ion beam technique (FIB) was applied to reveal the surface relief and early fatigue cracks. Two substantially different mechanism...

متن کامل

High-cycle fatigue of nickel-base superalloy René 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character

High-cycle fatigue (HCF), involving the premature initiation and/or rapid propagation of small cracks to failure due to high-frequency cyclic loading, has been identified as one of the leading causes of turbine engine failures in aircraft. In this work, we consider the feasibility of using grain-boundary engineering to improve the HCF properties of a polycrystalline nickel-base superalloy, René...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 373 2038  شماره 

صفحات  -

تاریخ انتشار 2015